-
Tipo de titulación: Certificado "Analista de Big Data
-
Cualificaciones adicionales: Certificado de "Ingeniero de Datos
Certificado "Análisis de datos
Certificado "Especialista en Big Data" -
Examen final: Praxisbezogene Projektarbeiten mit Abschlusspräsentationen
-
Horario de las clases: A tiempo completoDe lunes a viernes, de 8.30 a 15.35 horas (en semanas festivas, de 8.30 a 17.10 horas).
-
Lengua de enseñanza: Alemán
-
Duración: 12 Semanas
Ingeniero de datos
Fundamentos de Business Intelligence (aprox. 2 días)
Campos de aplicación, dimensiones de una arquitectura BI
Fundamentos de la inteligencia empresarial, OLAP, OLTP, tareas de los ingenieros de datos
Data Warehousing (DWH): tratamiento y procesamiento de datos estructurados, semiestructurados y no estructurados
Gestión de requisitos (aprox. 2 días)
Tareas, objetivos y procedimientos en el análisis de requisitos
Modelización de datos, introducción/modelización con ERM
Introducción/modelado en UML
- Diagramas de clases
- Análisis de casos de uso
- Diagramas de actividad
Inteligencia artificial (IA) en el proceso de trabajo
Presentación de tecnologías específicas de IA
y posibles aplicaciones en el entorno profesional
Bases de datos (aprox. 3 días)
Conceptos básicos de los sistemas de bases de datos
Arquitectura de los sistemas de gestión de bases de datos
Aplicación de RDBMS
Implementación del modelo de datos en RDBMS, formas normales
Introducción práctica y teórica a SQL
Límites de las bases de datos relacionales, csv, json
Almacén de datos (aprox. 4 días)
Esquema en estrella
Modelado de datos
Creación de Star Schema en RDBMS
Snowflake Schema, fundamentos, modelado de datos
Creación de Snowflake Schema en RDBMS
Galaxy Schema: Conceptos básicos, modelado de datos
Modificación Lenta de Tablas de Dimensión Tipo 1 a 5 - Restauración, Apilamiento, Reorganización, mini Dimensión y Tipo 5
Introducción a las dimensiones normales, causales, mini y monstruosas, heterogéneas y subdimensiones
Comparación de las orientadas al estado y a la transacción
Tablas de hechos DWH, densidad y almacenamiento
ETL (aprox. 4 días)
Limpieza de datos
- Valores nulos
- Preparación de datos
- Armonización de datos
- Aplicación de expresiones regulares
Comprensión de datos
- Validación de datos
- Análisis estadístico de datos
Protección y seguridad de los datos
Estructura práctica de las rutas ETL
Data Vault 2.0, conceptos básicos, hubs, enlaces, satélites, hash key, hash diff.
Modelización de datos Data Vault
Estructura práctica de un modelo Data Vault - Raw Vault, aplicación práctica de procedimientos hash
Trabajo por proyectos (aprox. 5 días)
Consolidar los contenidos aprendidos
Presentación de los resultados del proyecto
Análisis de datos
Introducción al análisis de datos (aprox. 1 día)
Modelo de referencia CRISP-DM
Flujos de trabajo de análisis de datos
Definición de inteligencia artificial, aprendizaje automático, aprendizaje profundo
Requisitos y función en la empresa de ingenieros de datos, científicos de datos y analistas de datos
Repaso de los fundamentos de Python (aprox. 1 día)
Análisis de datos (aprox. 3 días)
Módulos centrales de Python en el contexto del análisis de datos (NumPy, Pandas)
Proceso de preparación de datos
Algoritmos de minería de datos en Python
Inteligencia artificial (IA) en el proceso de trabajo
Presentación de tecnologías específicas de IA
y posibles aplicaciones en el entorno profesional
Visualización de datos (aprox. 3 días)
Análisis exploratorio de datos
Perspectivas
Calidad de los datos
Análisis de beneficios
Visualización con Python: Matplotlib, Seaborn, Plotly Express
Narración de datos
Gestión de datos (aprox. 2 días)
Arquitecturas de big data
Bases de datos relacionales con SQL
Comparación de bases de datos SQL y NoSQL
Inteligencia empresarial
Protección de datos en el contexto del análisis de datos
Análisis de datos en un contexto de big data (aprox. 1 día)
Enfoque MapReduce
Spark
NoSQL
Cuadros de mando (aprox. 3 días)
Biblioteca: Cuadros de mando
Estructura y personalización de cuadros de mando
Devoluciones de llamada
Minería de textos (aprox. 1 día)
Preprocesamiento de datos, visualización
Biblioteca: SpaCy
Trabajo por proyectos (aprox. 5 días)
Consolidar los contenidos aprendidos
Presentación de los resultados del proyecto
Especialista en Big Data
¿Qué es el Big Data? (aprox. 1 día)
Volumen, velocidad, variedad, valor, veracidad
Oportunidades y riesgos de las grandes cantidades de datos
Diferenciación: inteligencia empresarial, análisis de datos, ciencia de datos
¿Qué es la minería de datos?
Introducción a Apache Frameworks (aprox. 2 días)
Soluciones de big data en la nube
Patrones de acceso a datos
Almacenamiento de datos
MapReduce (aprox. 3 días)
Filosofía de MapReduce
Cluster Hadoop
Encadenamiento de trabajos MapReduce
Inteligencia artificial (IA) en el proceso de trabajo
Presentación de tecnologías específicas de IA
y posibles aplicaciones en el entorno profesional
Componentes (aprox. 3 días)
Breve presentación de las distintas herramientas
Transferencia de datos
Aplicaciones YARN
API JAVA de Hadoop
Apache Spark
NoSQL y HBase (aprox. 3 días)
Teorema CAP
ACID y BASE
Tipos de bases de datos
HBase
Visualizaciónde Big Data (aprox. 3 días)
Teorías de la visualización
Selección de diagramas
Nuevos tipos de diagramas
Herramientas para la visualización de datos
Trabajo por proyectos (aprox. 5 días)
Consolidar los contenidos aprendidos
Presentación de los resultados del proyecto
Es posible que se produzcan cambios. El contenido del curso se actualiza periódicamente.
Dominará los procesos de fusión, preparación, enriquecimiento y transmisión de datos y comprenderá los análisis de big data utilizando conceptos básicos de programación Python, SQL y bases de datos NoSQL. El conocimiento de software específico del sector para procesar y estructurar grandes datos no estructurados y visualizarlos completa tus conocimientos.
El curso está dirigido a licenciados en informática, informática empresarial, administración de empresas, matemáticas o una titulación comparable.
Una evaluación sistemática de los volúmenes de datos es esencial para que las empresas generen información sobre sus propios productos y el comportamiento de los clientes. En este contexto, los analistas de big data son cada vez más solicitados en todos los sectores.
Su significativo certificado proporciona una visión detallada de las cualificaciones que ha adquirido y mejora sus perspectivas profesionales.
Concepto didáctico
Tus profesores están altamente cualificados tanto profesional como didácticamente y te enseñarán desde el primer hasta el último día (no hay sistema de autoaprendizaje).
Aprenderá en grupos reducidos y eficaces. Los cursos suelen constar de 6 a 25 participantes. Las lecciones generales se complementan con numerosos ejercicios prácticos en todos los módulos del curso. La fase práctica es una parte importante del curso, ya que durante ella se procesa lo aprendido y se adquiere confianza y rutina en su aplicación. La parte final del curso incluye un proyecto, un estudio de caso o un examen final.
Aula virtual alfaview
Las clases se imparten utilizando la moderna tecnología de vídeo alfaview®, ya sea desde la comodidad de su propia casa o en nuestras instalaciones en Bildungszentrum. Todo el curso puede verse cara a cara a través de alfaview®, comunicarse entre sí con una calidad de voz sincronizada con los labios y trabajar en proyectos conjuntos. Por supuesto, también podrás ver y hablar con tus formadores conectados en directo en cualquier momento y recibirás clases de tus profesores en tiempo real durante todo el curso. Las clases no son e-learning, sino auténtica enseñanza presencial en directo a través de la tecnología de vídeo.
Los cursos de formación de alfatraining están subvencionados por Agentur für Arbeit y certificados de acuerdo con el reglamento de homologación AZAV. Al presentar una solicitud a Bildungsgutscheino Aktivierungs- und Vermittlungsgutschein, la totalidad de los costes del curso suelen correr a cargo de su organismo financiador.
También es posible obtener financiación a través de Europäischen Sozialfonds (FSE), Deutsche Rentenversicherung (DRV) o programas de financiación regionales. Como soldado regular, tiene la posibilidad de asistir a cursos de formación continua a través de Berufsförderungsdienst (BFD). Las empresas también pueden cualificar a sus empleados a través de un programa de financiación de Agentur für Arbeit (Qualifizierungschancengesetz).