-
Tipo de titulación: Certificado "Ingeniero de Big Data
Certificado "Estadísticas -
Cualificaciones adicionales: Certificado de "Ingeniero de Datos
Certificado "Especialista en Big Data" -
Examen final: Praxisbezogene Projektarbeiten mit Abschlusspräsentationen
-
Horario de las clases: A tiempo completoDe lunes a viernes, de 8.30 a 15.35 horas (en semanas festivas, de 8.30 a 17.10 horas).
-
Lengua de enseñanza: Alemán
-
Duración: 12 Semanas
Ingeniero de datos
Fundamentos de Business Intelligence (aprox. 2 días)
Campos de aplicación, dimensiones de una arquitectura BI
Fundamentos de la inteligencia empresarial, OLAP, OLTP, tareas de los ingenieros de datos
Data Warehousing (DWH): tratamiento y procesamiento de datos estructurados, semiestructurados y no estructurados
Gestión de requisitos (aprox. 2 días)
Tareas, objetivos y procedimientos en el análisis de requisitos
Modelización de datos, introducción/modelización con ERM
Introducción/modelado en UML
- Diagramas de clases
- Análisis de casos de uso
- Diagramas de actividad
Inteligencia artificial (IA) en el proceso de trabajo
Presentación de tecnologías específicas de IA
y posibles aplicaciones en el entorno profesional
Bases de datos (aprox. 3 días)
Conceptos básicos de los sistemas de bases de datos
Arquitectura de los sistemas de gestión de bases de datos
Aplicación de RDBMS
Implementación del modelo de datos en RDBMS, formas normales
Introducción práctica y teórica a SQL
Límites de las bases de datos relacionales, csv, json
Almacén de datos (aprox. 4 días)
Esquema en estrella
Modelado de datos
Creación de Star Schema en RDBMS
Snowflake Schema, fundamentos, modelado de datos
Creación de Snowflake Schema en RDBMS
Galaxy Schema: Conceptos básicos, modelado de datos
Modificación Lenta de Tablas de Dimensión Tipo 1 a 5 - Restauración, Apilamiento, Reorganización, mini Dimensión y Tipo 5
Introducción a las dimensiones normales, causales, mini y monstruosas, heterogéneas y subdimensiones
Comparación de las orientadas al estado y a la transacción
Tablas de hechos DWH, densidad y almacenamiento
ETL (aprox. 4 días)
Limpieza de datos
- Valores nulos
- Preparación de datos
- Armonización de datos
- Aplicación de expresiones regulares
Comprensión de datos
- Validación de datos
- Análisis estadístico de datos
Protección y seguridad de los datos
Estructura práctica de las rutas ETL
Data Vault 2.0, conceptos básicos, hubs, enlaces, satélites, hash key, hash diff.
Modelización de datos Data Vault
Estructura práctica de un modelo Data Vault - Raw Vault, aplicación práctica de procedimientos hash
Trabajo por proyectos (aprox. 5 días)
Consolidar los contenidos aprendidos
Presentación de los resultados del proyecto
Especialista en Big Data
¿Qué es el Big Data? (aprox. 1 día)
Volumen, velocidad, variedad, valor, veracidad
Oportunidades y riesgos de las grandes cantidades de datos
Diferenciación: inteligencia empresarial, análisis de datos, ciencia de datos
¿Qué es la minería de datos?
Introducción a Apache Frameworks (aprox. 2 días)
Soluciones de big data en la nube
Patrones de acceso a datos
Almacenamiento de datos
MapReduce (aprox. 3 días)
Filosofía de MapReduce
Cluster Hadoop
Encadenamiento de trabajos MapReduce
Inteligencia artificial (IA) en el proceso de trabajo
Presentación de tecnologías específicas de IA
y posibles aplicaciones en el entorno profesional
Componentes (aprox. 3 días)
Breve presentación de las distintas herramientas
Transferencia de datos
Aplicaciones YARN
API JAVA de Hadoop
Apache Spark
NoSQL y HBase (aprox. 3 días)
Teorema CAP
ACID y BASE
Tipos de bases de datos
HBase
Visualizaciónde Big Data (aprox. 3 días)
Teorías de la visualización
Selección de diagramas
Nuevos tipos de diagramas
Herramientas para la visualización de datos
Trabajo por proyectos (aprox. 5 días)
Consolidar los contenidos aprendidos
Presentación de los resultados del proyecto
Estadísticas
Fundamentos de estadística (aprox. 6 días)
Fundamentos de la teoría de la medición (población y muestra, tipos de muestra, niveles de medición y escala)
Estadística descriptiva univariante (distribuciones de frecuencia, medidas centrales, medidas de dispersión, valor estándar, histogramas, diagramas de barras, diagramas circulares, diagramas de líneas y diagramas de caja)
Estadística descriptiva bivariante (medidas de correlación, coeficientes de correlación, tablas cruzadas, gráficos de dispersión y gráficos de barras agrupadas)
Fundamentos de la estadística inferencial inductiva (distribución de probabilidades, distribución normal, distribución del valor medio, prueba de significación, prueba de hipótesis nula de Fisher, tamaño del efecto, estimación de parámetros, intervalos de confianza, gráficos de barras de error, análisis de potencia y determinación del tamaño óptimo de la muestra).
Inteligencia artificial (IA) en el proceso de trabajo
Presentación de tecnologías específicas de IA
y posibles aplicaciones en el entorno profesional
Métodos para comparar dos grupos (aprox. 5 días)
pruebas z y t para una muestra (desviación de un valor especificado)
Prueba t para la diferencia de medias entre dos muestras independientes/conectadas
Comprobación de la eficacia de acciones, medidas, intervenciones y otros cambios con pruebas t (diseños pretest-postest con dos grupos)
Pruebas de significación de apoyo (prueba de Anderson-Darling, prueba de Ryan-Joiner, prueba de Levene, prueba de Bonnet, prueba de significación para correlaciones)
Métodos no paramétricos (prueba de Wilcoxon, prueba de signos, prueba de Mann-Whitney)
Análisis de contingencia (prueba binomial, prueba exacta de Fisher, prueba chi-cuadrado, tabulaciones cruzadas con medidas de asociación)
Métodos para comparar las medias de varios grupos (aprox. 5 días)
Análisis de varianza monofactorial y bifactorial (ANOVA simple y equilibrado)
Análisis multifactorial de la varianza (modelo lineal general)
Factores fijos, aleatorios, cruzados y anidados
Métodos de comparación múltiple (Tukey-HSD, Dunnett, Hsu-MCB, Games-Howell)
Análisis de interacción (análisis de efectos de interacción)
Análisis de selectividad y potencia para análisis de varianza
Introducción al diseño de experimentos (DoE) (aprox. 1 día)
Diseños experimentales factoriales completos y parciales
Trabajo por proyectos (aprox. 3 días)
Consolidar los contenidos aprendidos
Presentación de los resultados del proyecto
Es posible que se produzcan cambios. El contenido del curso se actualiza periódicamente.
Domina los procesos de recopilación, preparación, enriquecimiento y transmisión de datos. También puede procesar grandes cantidades de datos no estructurados con la ayuda de software específico del sector. Conoce el marco Apache y sabe visualizar los datos de forma atractiva.
También comprenderá los fundamentos de la estadística, será capaz de procesar y evaluar datos y presentar, explicar e interpretar análisis y resultados de datos estadísticos utilizando gráficos.
El curso está dirigido a licenciados en informática, informática empresarial, administración de empresas, matemáticas o una titulación comparable.
Los big data se utilizan en las empresas para el análisis interdisciplinar y el diseño de soluciones informáticas en colaboración con los equipos de desarrollo y operaciones. Los ingenieros de Big Data son demandados por empresas grandes y medianas de la industria, el comercio, los servicios y las finanzas.
Un buen conocimiento de la estadística es una valiosa cualificación adicional muy demandada en la investigación y el desarrollo industrial, en el desarrollo de fármacos, en la supervisión de estudios médicos, en las finanzas y los seguros, en la tecnología de la información o en la administración pública.Su significativo certificado proporciona una visión detallada de las cualificaciones que ha adquirido y mejora sus perspectivas profesionales.
Concepto didáctico
Tus profesores están altamente cualificados tanto profesional como didácticamente y te enseñarán desde el primer hasta el último día (no hay sistema de autoaprendizaje).
Aprenderá en grupos reducidos y eficaces. Los cursos suelen constar de 6 a 25 participantes. Las lecciones generales se complementan con numerosos ejercicios prácticos en todos los módulos del curso. La fase práctica es una parte importante del curso, ya que durante ella se procesa lo aprendido y se adquiere confianza y rutina en su aplicación. La parte final del curso incluye un proyecto, un estudio de caso o un examen final.
Aula virtual alfaview
Las clases se imparten utilizando la moderna tecnología de vídeo alfaview®, ya sea desde la comodidad de su propia casa o en nuestras instalaciones en Bildungszentrum. Todo el curso puede verse cara a cara a través de alfaview®, comunicarse entre sí con una calidad de voz sincronizada con los labios y trabajar en proyectos conjuntos. Por supuesto, también podrás ver y hablar con tus formadores conectados en directo en cualquier momento y recibirás clases de tus profesores en tiempo real durante todo el curso. Las clases no son e-learning, sino auténtica enseñanza presencial en directo a través de la tecnología de vídeo.
Los cursos de formación de alfatraining están subvencionados por Agentur für Arbeit y certificados de acuerdo con el reglamento de homologación AZAV. Al presentar una solicitud a Bildungsgutscheino Aktivierungs- und Vermittlungsgutschein, la totalidad de los costes del curso suelen correr a cargo de su organismo financiador.
También es posible obtener financiación a través de Europäischen Sozialfonds (FSE), Deutsche Rentenversicherung (DRV) o programas de financiación regionales. Como soldado regular, tiene la posibilidad de asistir a cursos de formación continua a través de Berufsförderungsdienst (BFD). Las empresas también pueden cualificar a sus empleados a través de un programa de financiación de Agentur für Arbeit (Qualifizierungschancengesetz).